Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes
نویسندگان
چکیده
منابع مشابه
Genome-scale CRISPR pooled screens.
Genome editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) systems have ushered in a new era of targeted DNA manipulation. The easy programmability of CRISPR using short oligonucleotides enables rapid synthesis of large-scale libraries for functional genetic screens. Here we present fundamental concepts and methods for pooled CRISPR screens and review...
متن کاملEvaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens
The adaptation of CRISPR/SpCas9 technology to mammalian cell lines is transforming the study of human functional genomics. Pooled libraries of CRISPR guide RNAs (gRNAs) targeting human protein-coding genes and encoded in viral vectors have been used to systematically create gene knockouts in a variety of human cancer and immortalized cell lines, in an effort to identify whether these knockouts ...
متن کاملHigh-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities
The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. ...
متن کاملGenome-scale CRISPR-Cas9 knockout screening in human cells.
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative...
متن کاملGenome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection.
An obvious goal in the study of bacteria that cause human disease is to identify the bacterial genes required for growth within the host. Historically, this has presented a significant technological challenge. However, with this goal in mind, the in vivo expression technology (IVET) and signature-tagged mutagenesis (STM) techniques were developed during the 1990s. These techniques have been use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Reports
سال: 2019
ISSN: 2211-1247
DOI: 10.1016/j.celrep.2019.03.043